3.3.63 \(\int \frac {\tanh (x)}{(a+b \tanh ^4(x))^{5/2}} \, dx\) [263]

3.3.63.1 Optimal result
3.3.63.2 Mathematica [A] (verified)
3.3.63.3 Rubi [A] (verified)
3.3.63.4 Maple [C] (verified)
3.3.63.5 Fricas [B] (verification not implemented)
3.3.63.6 Sympy [F]
3.3.63.7 Maxima [F]
3.3.63.8 Giac [F]
3.3.63.9 Mupad [F(-1)]

3.3.63.1 Optimal result

Integrand size = 15, antiderivative size = 118 \[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{5/2}} \, dx=\frac {\text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{2 (a+b)^{5/2}}-\frac {a-b \tanh ^2(x)}{6 a (a+b) \left (a+b \tanh ^4(x)\right )^{3/2}}-\frac {3 a^2-b (5 a+2 b) \tanh ^2(x)}{6 a^2 (a+b)^2 \sqrt {a+b \tanh ^4(x)}} \]

output
1/2*arctanh((a+b*tanh(x)^2)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))/(a+b)^(5/2) 
+1/6*(-3*a^2+b*(5*a+2*b)*tanh(x)^2)/a^2/(a+b)^2/(a+b*tanh(x)^4)^(1/2)+1/6* 
(-a+b*tanh(x)^2)/a/(a+b)/(a+b*tanh(x)^4)^(3/2)
 
3.3.63.2 Mathematica [A] (verified)

Time = 0.88 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.96 \[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{5/2}} \, dx=\frac {1}{6} \left (\frac {3 \text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{(a+b)^{5/2}}+\frac {-a^2 (4 a+b)+3 a b (2 a+b) \tanh ^2(x)-3 a^2 b \tanh ^4(x)+b^2 (5 a+2 b) \tanh ^6(x)}{a^2 (a+b)^2 \left (a+b \tanh ^4(x)\right )^{3/2}}\right ) \]

input
Integrate[Tanh[x]/(a + b*Tanh[x]^4)^(5/2),x]
 
output
((3*ArcTanh[(a + b*Tanh[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tanh[x]^4])])/(a + b 
)^(5/2) + (-(a^2*(4*a + b)) + 3*a*b*(2*a + b)*Tanh[x]^2 - 3*a^2*b*Tanh[x]^ 
4 + b^2*(5*a + 2*b)*Tanh[x]^6)/(a^2*(a + b)^2*(a + b*Tanh[x]^4)^(3/2)))/6
 
3.3.63.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.14, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.733, Rules used = {3042, 26, 4153, 26, 1577, 496, 25, 686, 27, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \tan (i x)}{\left (a+b \tan (i x)^4\right )^{5/2}}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\tan (i x)}{\left (b \tan (i x)^4+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -i \int \frac {i \tanh (x)}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^4(x)+a\right )^{5/2}}d\tanh (x)\)

\(\Big \downarrow \) 26

\(\displaystyle \int \frac {\tanh (x)}{\left (1-\tanh ^2(x)\right ) \left (a+b \tanh ^4(x)\right )^{5/2}}d\tanh (x)\)

\(\Big \downarrow \) 1577

\(\displaystyle \frac {1}{2} \int \frac {1}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^4(x)+a\right )^{5/2}}d\tanh ^2(x)\)

\(\Big \downarrow \) 496

\(\displaystyle \frac {1}{2} \left (-\frac {\int -\frac {-2 b \tanh ^2(x)+3 a+2 b}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^4(x)+a\right )^{3/2}}d\tanh ^2(x)}{3 a (a+b)}-\frac {a-b \tanh ^2(x)}{3 a (a+b) \left (a+b \tanh ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {-2 b \tanh ^2(x)+3 a+2 b}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^4(x)+a\right )^{3/2}}d\tanh ^2(x)}{3 a (a+b)}-\frac {a-b \tanh ^2(x)}{3 a (a+b) \left (a+b \tanh ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 686

\(\displaystyle \frac {1}{2} \left (\frac {-\frac {\int -\frac {3 a^2 b}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)}{a b (a+b)}-\frac {3 a^2-b (5 a+2 b) \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}}{3 a (a+b)}-\frac {a-b \tanh ^2(x)}{3 a (a+b) \left (a+b \tanh ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {\frac {3 a \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)}{a+b}-\frac {3 a^2-b (5 a+2 b) \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}}{3 a (a+b)}-\frac {a-b \tanh ^2(x)}{3 a (a+b) \left (a+b \tanh ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {1}{2} \left (\frac {-\frac {3 a \int \frac {1}{-\tanh ^4(x)+a+b}d\frac {-b \tanh ^2(x)-a}{\sqrt {b \tanh ^4(x)+a}}}{a+b}-\frac {3 a^2-b (5 a+2 b) \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}}{3 a (a+b)}-\frac {a-b \tanh ^2(x)}{3 a (a+b) \left (a+b \tanh ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {-\frac {3 a^2-b (5 a+2 b) \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}-\frac {3 a \text {arctanh}\left (\frac {-a-b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{(a+b)^{3/2}}}{3 a (a+b)}-\frac {a-b \tanh ^2(x)}{3 a (a+b) \left (a+b \tanh ^4(x)\right )^{3/2}}\right )\)

input
Int[Tanh[x]/(a + b*Tanh[x]^4)^(5/2),x]
 
output
(-1/3*(a - b*Tanh[x]^2)/(a*(a + b)*(a + b*Tanh[x]^4)^(3/2)) + ((-3*a*ArcTa 
nh[(-a - b*Tanh[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tanh[x]^4])])/(a + b)^(3/2) 
- (3*a^2 - b*(5*a + 2*b)*Tanh[x]^2)/(a*(a + b)*Sqrt[a + b*Tanh[x]^4]))/(3* 
a*(a + b)))/2
 

3.3.63.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 496
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-(a*d + b*c*x))*(c + d*x)^(n + 1)*((a + b*x^2)^(p + 1)/(2*a*(p + 1)*(b*c^2 
 + a*d^2))), x] + Simp[1/(2*a*(p + 1)*(b*c^2 + a*d^2))   Int[(c + d*x)^n*(a 
 + b*x^2)^(p + 1)*Simp[b*c^2*(2*p + 3) + a*d^2*(n + 2*p + 3) + b*c*d*(n + 2 
*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[p, -1] && IntQuad 
raticQ[a, 0, b, c, d, n, p, x]
 

rule 686
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(f*a*c*e - a*g*c*d + c*(c*d*f + 
a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[ 
1/(2*a*c*(p + 1)*(c*d^2 + a*e^2))   Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Sim 
p[f*(c^2*d^2*(2*p + 3) + a*c*e^2*(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f 
+ a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ 
[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1577
Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, c, d, e, p, q}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.63.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 0.71 (sec) , antiderivative size = 637, normalized size of antiderivative = 5.40

method result size
derivativedivides \(-\frac {\left (-\frac {\tanh \left (x \right )^{3}}{6 a \left (a +b \right ) b}-\frac {\tanh \left (x \right )^{2}}{6 a \left (a +b \right ) b}-\frac {\tanh \left (x \right )}{6 a \left (a +b \right ) b}+\frac {1}{6 \left (a +b \right ) b^{2}}\right ) \sqrt {a +b \tanh \left (x \right )^{4}}}{2 \left (\tanh \left (x \right )^{4}+\frac {a}{b}\right )^{2}}+\frac {b \left (\frac {\left (3 a +b \right ) \tanh \left (x \right )^{3}}{8 a^{2} \left (a +b \right )^{2}}+\frac {\left (5 a +2 b \right ) \tanh \left (x \right )^{2}}{12 a^{2} \left (a +b \right )^{2}}+\frac {\left (11 a +5 b \right ) \tanh \left (x \right )}{24 a^{2} \left (a +b \right )^{2}}-\frac {1}{4 \left (a +b \right )^{2} b}\right )}{\sqrt {\left (\tanh \left (x \right )^{4}+\frac {a}{b}\right ) b}}-\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}-\frac {\sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, -\frac {i \sqrt {a}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}}{2 \left (a +b \right )^{2}}-\frac {\left (\frac {\tanh \left (x \right )^{3}}{6 a \left (a +b \right ) b}-\frac {\tanh \left (x \right )^{2}}{6 a \left (a +b \right ) b}+\frac {\tanh \left (x \right )}{6 a \left (a +b \right ) b}+\frac {1}{6 \left (a +b \right ) b^{2}}\right ) \sqrt {a +b \tanh \left (x \right )^{4}}}{2 \left (\tanh \left (x \right )^{4}+\frac {a}{b}\right )^{2}}+\frac {b \left (-\frac {\left (3 a +b \right ) \tanh \left (x \right )^{3}}{8 a^{2} \left (a +b \right )^{2}}+\frac {\left (5 a +2 b \right ) \tanh \left (x \right )^{2}}{12 a^{2} \left (a +b \right )^{2}}-\frac {\left (11 a +5 b \right ) \tanh \left (x \right )}{24 a^{2} \left (a +b \right )^{2}}-\frac {1}{4 \left (a +b \right )^{2} b}\right )}{\sqrt {\left (\tanh \left (x \right )^{4}+\frac {a}{b}\right ) b}}-\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, -\frac {i \sqrt {a}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}}{2 \left (a +b \right )^{2}}\) \(637\)
default \(-\frac {\left (-\frac {\tanh \left (x \right )^{3}}{6 a \left (a +b \right ) b}-\frac {\tanh \left (x \right )^{2}}{6 a \left (a +b \right ) b}-\frac {\tanh \left (x \right )}{6 a \left (a +b \right ) b}+\frac {1}{6 \left (a +b \right ) b^{2}}\right ) \sqrt {a +b \tanh \left (x \right )^{4}}}{2 \left (\tanh \left (x \right )^{4}+\frac {a}{b}\right )^{2}}+\frac {b \left (\frac {\left (3 a +b \right ) \tanh \left (x \right )^{3}}{8 a^{2} \left (a +b \right )^{2}}+\frac {\left (5 a +2 b \right ) \tanh \left (x \right )^{2}}{12 a^{2} \left (a +b \right )^{2}}+\frac {\left (11 a +5 b \right ) \tanh \left (x \right )}{24 a^{2} \left (a +b \right )^{2}}-\frac {1}{4 \left (a +b \right )^{2} b}\right )}{\sqrt {\left (\tanh \left (x \right )^{4}+\frac {a}{b}\right ) b}}-\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}-\frac {\sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, -\frac {i \sqrt {a}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}}{2 \left (a +b \right )^{2}}-\frac {\left (\frac {\tanh \left (x \right )^{3}}{6 a \left (a +b \right ) b}-\frac {\tanh \left (x \right )^{2}}{6 a \left (a +b \right ) b}+\frac {\tanh \left (x \right )}{6 a \left (a +b \right ) b}+\frac {1}{6 \left (a +b \right ) b^{2}}\right ) \sqrt {a +b \tanh \left (x \right )^{4}}}{2 \left (\tanh \left (x \right )^{4}+\frac {a}{b}\right )^{2}}+\frac {b \left (-\frac {\left (3 a +b \right ) \tanh \left (x \right )^{3}}{8 a^{2} \left (a +b \right )^{2}}+\frac {\left (5 a +2 b \right ) \tanh \left (x \right )^{2}}{12 a^{2} \left (a +b \right )^{2}}-\frac {\left (11 a +5 b \right ) \tanh \left (x \right )}{24 a^{2} \left (a +b \right )^{2}}-\frac {1}{4 \left (a +b \right )^{2} b}\right )}{\sqrt {\left (\tanh \left (x \right )^{4}+\frac {a}{b}\right ) b}}-\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, -\frac {i \sqrt {a}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}}{2 \left (a +b \right )^{2}}\) \(637\)

input
int(tanh(x)/(a+b*tanh(x)^4)^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/2*(-1/6/a/(a+b)/b*tanh(x)^3-1/6/a/(a+b)/b*tanh(x)^2-1/6/a/(a+b)/b*tanh( 
x)+1/6/(a+b)/b^2)*(a+b*tanh(x)^4)^(1/2)/(tanh(x)^4+a/b)^2+b*(1/8*(3*a+b)/a 
^2/(a+b)^2*tanh(x)^3+1/12*(5*a+2*b)/a^2/(a+b)^2*tanh(x)^2+1/24/a^2*(11*a+5 
*b)/(a+b)^2*tanh(x)-1/4/(a+b)^2/b)/((tanh(x)^4+a/b)*b)^(1/2)-1/2/(a+b)^2*( 
-1/2/(a+b)^(1/2)*arctanh(1/2*(2*b*tanh(x)^2+2*a)/(a+b)^(1/2)/(a+b*tanh(x)^ 
4)^(1/2))-1/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2 
)*(1+I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)/(a+b*tanh(x)^4)^(1/2)*EllipticPi(t 
anh(x)*(I/a^(1/2)*b^(1/2))^(1/2),-I*a^(1/2)/b^(1/2),(-I/a^(1/2)*b^(1/2))^( 
1/2)/(I/a^(1/2)*b^(1/2))^(1/2)))-1/2*(1/6/a/(a+b)/b*tanh(x)^3-1/6/a/(a+b)/ 
b*tanh(x)^2+1/6/a/(a+b)/b*tanh(x)+1/6/(a+b)/b^2)*(a+b*tanh(x)^4)^(1/2)/(ta 
nh(x)^4+a/b)^2+b*(-1/8*(3*a+b)/a^2/(a+b)^2*tanh(x)^3+1/12*(5*a+2*b)/a^2/(a 
+b)^2*tanh(x)^2-1/24/a^2*(11*a+5*b)/(a+b)^2*tanh(x)-1/4/(a+b)^2/b)/((tanh( 
x)^4+a/b)*b)^(1/2)-1/2/(a+b)^2*(-1/2/(a+b)^(1/2)*arctanh(1/2*(2*b*tanh(x)^ 
2+2*a)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))+1/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I 
/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)/(a 
+b*tanh(x)^4)^(1/2)*EllipticPi(tanh(x)*(I/a^(1/2)*b^(1/2))^(1/2),-I*a^(1/2 
)/b^(1/2),(-I/a^(1/2)*b^(1/2))^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)))
 
3.3.63.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8210 vs. \(2 (102) = 204\).

Time = 2.04 (sec) , antiderivative size = 16463, normalized size of antiderivative = 139.52 \[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)/(a+b*tanh(x)^4)^(5/2),x, algorithm="fricas")
 
output
Too large to include
 
3.3.63.6 Sympy [F]

\[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{5/2}} \, dx=\int \frac {\tanh {\left (x \right )}}{\left (a + b \tanh ^{4}{\left (x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(tanh(x)/(a+b*tanh(x)**4)**(5/2),x)
 
output
Integral(tanh(x)/(a + b*tanh(x)**4)**(5/2), x)
 
3.3.63.7 Maxima [F]

\[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{5/2}} \, dx=\int { \frac {\tanh \left (x\right )}{{\left (b \tanh \left (x\right )^{4} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(tanh(x)/(a+b*tanh(x)^4)^(5/2),x, algorithm="maxima")
 
output
integrate(tanh(x)/(b*tanh(x)^4 + a)^(5/2), x)
 
3.3.63.8 Giac [F]

\[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{5/2}} \, dx=\int { \frac {\tanh \left (x\right )}{{\left (b \tanh \left (x\right )^{4} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(tanh(x)/(a+b*tanh(x)^4)^(5/2),x, algorithm="giac")
 
output
integrate(tanh(x)/(b*tanh(x)^4 + a)^(5/2), x)
 
3.3.63.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{5/2}} \, dx=\int \frac {\mathrm {tanh}\left (x\right )}{{\left (b\,{\mathrm {tanh}\left (x\right )}^4+a\right )}^{5/2}} \,d x \]

input
int(tanh(x)/(a + b*tanh(x)^4)^(5/2),x)
 
output
int(tanh(x)/(a + b*tanh(x)^4)^(5/2), x)